Markopy
Utilizing Markov Models for brute forcing attacks
Python.Markopy.MarkovModel Class Reference

Abstract representation of a markov model. More...

Inheritance diagram for Python.Markopy.MarkovModel:
Collaboration diagram for Python.Markopy.MarkovModel:

Public Member Functions

def Import (str filename)
 
def Export (str filename)
 
def Train (str dataset, str seperator, int threads)
 
def Generate (int count, str wordlist, int minlen, int maxlen, int threads)
 
std::ifstream * OpenDatasetFile (const char *filename)
 Open dataset file and return the ifstream pointer. More...
 
void Train (const char *datasetFileName, char delimiter, int threads)
 Train the model with the dataset file. More...
 
std::ofstream * Save (const char *filename)
 Export model to file. More...
 
void Generate (unsigned long int n, const char *wordlistFileName, int minLen=6, int maxLen=12, int threads=20)
 Call Markov::Model::RandomWalk n times, and collect output. More...
 
void Buff (const char *str, double multiplier, bool bDontAdjustSelfLoops=true, bool bDontAdjustExtendedLoops=false)
 Buff expression of some characters in the model. More...
 
char * RandomWalk (Markov::Random::RandomEngine *randomEngine, int minSetting, int maxSetting, char *buffer)
 Do a random walk on this model. More...
 
void AdjustEdge (const char *payload, long int occurrence)
 Adjust the model with a single string. More...
 
bool Import (std::ifstream *)
 Import a file to construct the model. More...
 
bool Import (const char *filename)
 Open a file to import with filename, and call bool Model::Import with std::ifstream. More...
 
bool Export (std::ofstream *)
 Export a file of the model. More...
 
bool Export (const char *filename)
 Open a file to export with filename, and call bool Model::Export with std::ofstream. More...
 
Node< char > * StarterNode ()
 Return starter Node. More...
 
std::vector< Edge< char > * > * Edges ()
 Return a vector of all the edges in the model. More...
 
std::map< char, Node< char > * > * Nodes ()
 Return starter Node. More...
 
void OptimizeEdgeOrder ()
 Sort edges of all nodes in the model ordered by edge weights. More...
 

Private Member Functions

void TrainThread (Markov::API::Concurrency::ThreadSharedListHandler *listhandler, char delimiter)
 A single thread invoked by the Train function. More...
 
void GenerateThread (std::mutex *outputLock, unsigned long int n, std::ofstream *wordlist, int minLen, int maxLen)
 A single thread invoked by the Generate function. More...
 

Private Attributes

std::ifstream * datasetFile
 
std::ofstream * modelSavefile
 Dataset file input of our system
More...
 
std::ofstream * outputFile
 File to save model of our system
More...
 
std::map< char, Node< char > * > nodes
 Map LeftNode is the Nodes NodeValue Map RightNode is the node pointer. More...
 
Node< char > * starterNode
 Starter Node of this model. More...
 
std::vector< Edge< char > * > edges
 A list of all edges in this model. More...
 

Detailed Description

Abstract representation of a markov model.

To help with the python-cpp gateway documentation.

Definition at line 13 of file mm.py.

Member Function Documentation

◆ AdjustEdge()

void Markov::Model< char >::AdjustEdge ( const NodeStorageType payload,
long int  occurrence 
)
inherited

Adjust the model with a single string.

Start from the starter node, and for each character, AdjustEdge the edge EdgeWeight from current node to the next, until NULL character is reached.

Then, update the edge EdgeWeight from current node, to the terminator node.

This function is used for training purposes, as it can be used for adjusting the model with each line of the corpus file.

Example Use: Create an empty model and train it with string: "testdata"

char test[] = "testdata";
model.AdjustEdge(test, 15);
void AdjustEdge(const NodeStorageType *payload, long int occurrence)
Adjust the model with a single string.
Definition: model.h:337
Parameters
string- String that is passed from the training, and will be used to AdjustEdge the model with
occurrence- Occurrence of this string.

Definition at line 109 of file model.h.

337  {
338  NodeStorageType p = payload[0];
341  int i = 0;
342 
343  if (p == 0) return;
344  while (p != 0) {
345  e = curnode->FindEdge(p);
346  if (e == NULL) return;
347  e->AdjustEdge(occurrence);
348  curnode = e->RightNode();
349  p = payload[++i];
350  }
351 
352  e = curnode->FindEdge('\xff');
353  e->AdjustEdge(occurrence);
354  return;
355 }
Edge class used to link nodes in the model together.
Definition: edge.h:23
Node< NodeStorageType > * RightNode()
return edge's RightNode
Definition: edge.h:170
void AdjustEdge(long int offset)
Adjust the edge EdgeWeight with offset. Adds the offset parameter to the edge EdgeWeight.
Definition: edge.h:137
Node< char > * starterNode
Starter Node of this model.
Definition: model.h:198
Edge< storageType > * FindEdge(storageType repr)
Find an edge with its character representation.
Definition: node.h:260

◆ Buff()

void Markov::API::MarkovPasswords::Buff ( const char *  str,
double  multiplier,
bool  bDontAdjustSelfLoops = true,
bool  bDontAdjustExtendedLoops = false 
)
inherited

Buff expression of some characters in the model.

Parameters
strA string containing all the characters to be buffed
multiplierA constant value to buff the nodes with.
bDontAdjustSelfEdgesDo not adjust weights if target node is same as source node
bDontAdjustExtendedLoopsDo not adjust if both source and target nodes are in first parameter

Definition at line 153 of file markovPasswords.cpp.

153  {
154  std::string buffstr(str);
155  std::map< char, Node< char > * > *nodes;
156  std::map< char, Edge< char > * > *edges;
157  nodes = this->Nodes();
158  int i=0;
159  for (auto const& [repr, node] : *nodes){
160  edges = node->Edges();
161  for (auto const& [targetrepr, edge] : *edges){
162  if(buffstr.find(targetrepr)!= std::string::npos){
163  if(bDontAdjustSelfLoops && repr==targetrepr) continue;
164  if(bDontAdjustExtendedLoops){
165  if(buffstr.find(repr)!= std::string::npos){
166  continue;
167  }
168  }
169  long int weight = edge->EdgeWeight();
170  weight = weight*multiplier;
171  edge->AdjustEdge(weight);
172  }
173 
174  }
175  i++;
176  }
177 
178  this->OptimizeEdgeOrder();
179 }
std::vector< Edge< char > * > edges
A list of all edges in this model.
Definition: model.h:204
std::map< char, Node< char > * > * Nodes()
Return starter Node.
Definition: model.h:181
std::map< char, Node< char > * > nodes
Map LeftNode is the Nodes NodeValue Map RightNode is the node pointer.
Definition: model.h:193
void OptimizeEdgeOrder()
Sort edges of all nodes in the model ordered by edge weights.
Definition: model.h:265

References Markov::Edge< NodeStorageType >::AdjustEdge(), Markov::Node< storageType >::Edges(), Markov::Edge< NodeStorageType >::EdgeWeight(), Markov::Model< NodeStorageType >::Nodes(), and Markov::Model< NodeStorageType >::OptimizeEdgeOrder().

Referenced by main().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ Edges()

std::vector<Edge<char >*>* Markov::Model< char >::Edges ( )
inlineinherited

Return a vector of all the edges in the model.

Returns
vector of edges

Definition at line 176 of file model.h.

176 { return &edges;}

◆ Export() [1/3]

bool Markov::Model< char >::Export ( const char *  filename)
inherited

Open a file to export with filename, and call bool Model::Export with std::ofstream.

Returns
True if successful, False for incomplete models or corrupt file formats

Example Use: Export file to filename

model.Export("test.mdl");
bool Export(std::ofstream *)
Export a file of the model.
Definition: model.h:288

Definition at line 166 of file model.h.

300  {
301  std::ofstream exportfile;
302  exportfile.open(filename);
303  return this->Export(&exportfile);
304 }

◆ Export() [2/3]

bool Markov::Model< char >::Export ( std::ofstream *  f)
inherited

Export a file of the model.

File contains a list of edges. Format is: Left_repr;EdgeWeight;right_repr. For more information on the format, check out the project wiki or github readme.

Iterate over this vertices, and their edges, and write them to file.

Returns
True if successful, False for incomplete models.

Example Use: Export file to ofstream

std::ofstream file("test.mdl");
model.Export(&file);

Definition at line 155 of file model.h.

288  {
290  for (std::vector<int>::size_type i = 0; i != this->edges.size(); i++) {
291  e = this->edges[i];
292  //std::cout << e->LeftNode()->NodeValue() << "," << e->EdgeWeight() << "," << e->RightNode()->NodeValue() << "\n";
293  *f << e->LeftNode()->NodeValue() << "," << e->EdgeWeight() << "," << e->RightNode()->NodeValue() << "\n";
294  }
295 
296  return true;
297 }
uint64_t EdgeWeight()
return edge's EdgeWeight.
Definition: edge.h:160
Node< NodeStorageType > * LeftNode()
return edge's LeftNode
Definition: edge.h:165
unsigned char NodeValue()
Return character representation of this node.
Definition: node.h:215
f
output file handle
Definition: model_2gram.py:16

◆ Export() [3/3]

def Python.Markopy.MarkovModel.Export ( str  filename)

Definition at line 26 of file mm.py.

26  def Export(filename : str):
27  pass
28 

◆ Generate() [1/2]

def Python.Markopy.MarkovModel.Generate ( int  count,
str  wordlist,
int  minlen,
int  maxlen,
int  threads 
)

Definition at line 34 of file mm.py.

34  def Generate(count : int, wordlist : str, minlen : int, maxlen: int, threads : int):
35  pass
36 
37 

Referenced by Python.Markopy.MarkovPasswordsCLI._generate().

Here is the caller graph for this function:

◆ Generate() [2/2]

void Markov::API::MarkovPasswords::Generate ( unsigned long int  n,
const char *  wordlistFileName,
int  minLen = 6,
int  maxLen = 12,
int  threads = 20 
)
inherited

Call Markov::Model::RandomWalk n times, and collect output.

Generate from model and write results to a file. a much more performance-optimized method. FastRandomWalk will reduce the runtime by %96.5 on average.

Deprecated:
See Markov::API::MatrixModel::FastRandomWalk for more information.
Parameters
n- Number of passwords to generate.
wordlistFileName- Filename to write to
minLen- Minimum password length to generate
maxLen- Maximum password length to generate
threads- number of OS threads to spawn

Definition at line 118 of file markovPasswords.cpp.

118  {
119  char* res;
120  char print[100];
121  std::ofstream wordlist;
122  wordlist.open(wordlistFileName);
123  std::mutex mlock;
124  int iterationsPerThread = n/threads;
125  int iterationsCarryOver = n%threads;
126  std::vector<std::thread*> threadsV;
127  for(int i=0;i<threads;i++){
128  threadsV.push_back(new std::thread(&Markov::API::MarkovPasswords::GenerateThread, this, &mlock, iterationsPerThread, &wordlist, minLen, maxLen));
129  }
130 
131  for(int i=0;i<threads;i++){
132  threadsV[i]->join();
133  delete threadsV[i];
134  }
135 
136  this->GenerateThread(&mlock, iterationsCarryOver, &wordlist, minLen, maxLen);
137 
138 }
void GenerateThread(std::mutex *outputLock, unsigned long int n, std::ofstream *wordlist, int minLen, int maxLen)
A single thread invoked by the Generate function.

References Markov::API::MarkovPasswords::GenerateThread().

Referenced by Markov::Markopy::BOOST_PYTHON_MODULE(), and Markov::GUI::Generate::generation().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ GenerateThread()

void Markov::API::MarkovPasswords::GenerateThread ( std::mutex *  outputLock,
unsigned long int  n,
std::ofstream *  wordlist,
int  minLen,
int  maxLen 
)
privateinherited

A single thread invoked by the Generate function.

DEPRECATED: See Markov::API::MatrixModel::FastRandomWalkThread for more information. This has been replaced with a much more performance-optimized method. FastRandomWalk will reduce the runtime by %96.5 on average.

Parameters
outputLock- shared mutex lock to lock during output operation. Prevents race condition on write.
nnumber of lines to be generated by this thread
wordlistwordlistfile
minLen- Minimum password length to generate
maxLen- Maximum password length to generate

Definition at line 140 of file markovPasswords.cpp.

140  {
141  char* res = new char[maxLen+5];
142  if(n==0) return;
143 
144  Markov::Random::Marsaglia MarsagliaRandomEngine;
145  for (int i = 0; i < n; i++) {
146  this->RandomWalk(&MarsagliaRandomEngine, minLen, maxLen, res);
147  outputLock->lock();
148  *wordlist << res << "\n";
149  outputLock->unlock();
150  }
151 }
char * RandomWalk(Markov::Random::RandomEngine *randomEngine, int minSetting, int maxSetting, char *buffer)
Do a random walk on this model.
Definition: model.h:307
Implementation of Marsaglia Random Engine.
Definition: random.h:125

References Markov::Model< NodeStorageType >::RandomWalk().

Referenced by Markov::API::MarkovPasswords::Generate().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ Import() [1/3]

bool Markov::Model< char >::Import ( const char *  filename)
inherited

Open a file to import with filename, and call bool Model::Import with std::ifstream.

Returns
True if successful, False for incomplete models or corrupt file formats

Example Use: Import a file with filename

model.Import("test.mdl");
bool Import(std::ifstream *)
Import a file to construct the model.
Definition: model.h:216

Definition at line 137 of file model.h.

280  {
281  std::ifstream importfile;
282  importfile.open(filename);
283  return this->Import(&importfile);
284 
285 }

◆ Import() [2/3]

bool Markov::Model< char >::Import ( std::ifstream *  f)
inherited

Import a file to construct the model.

File contains a list of edges. For more info on the file format, check out the wiki and github readme pages. Format is: Left_repr;EdgeWeight;right_repr

Iterate over this list, and construct nodes and edges accordingly.

Returns
True if successful, False for incomplete models or corrupt file formats

Example Use: Import a file from ifstream

std::ifstream file("test.mdl");
model.Import(&file);

Definition at line 126 of file model.h.

216  {
217  std::string cell;
218 
219  char src;
220  char target;
221  long int oc;
222 
223  while (std::getline(*f, cell)) {
224  //std::cout << "cell: " << cell << std::endl;
225  src = cell[0];
226  target = cell[cell.length() - 1];
227  char* j;
228  oc = std::strtol(cell.substr(2, cell.length() - 2).c_str(),&j,10);
229  //std::cout << oc << "\n";
233  if (this->nodes.find(src) == this->nodes.end()) {
234  srcN = new Markov::Node<NodeStorageType>(src);
235  this->nodes.insert(std::pair<char, Markov::Node<NodeStorageType>*>(src, srcN));
236  //std::cout << "Creating new node at start.\n";
237  }
238  else {
239  srcN = this->nodes.find(src)->second;
240  }
241 
242  if (this->nodes.find(target) == this->nodes.end()) {
243  targetN = new Markov::Node<NodeStorageType>(target);
244  this->nodes.insert(std::pair<char, Markov::Node<NodeStorageType>*>(target, targetN));
245  //std::cout << "Creating new node at end.\n";
246  }
247  else {
248  targetN = this->nodes.find(target)->second;
249  }
250  e = srcN->Link(targetN);
251  e->AdjustEdge(oc);
252  this->edges.push_back(e);
253 
254  //std::cout << int(srcN->NodeValue()) << " --" << e->EdgeWeight() << "--> " << int(targetN->NodeValue()) << "\n";
255 
256 
257  }
258 
259  this->OptimizeEdgeOrder();
260 
261  return true;
262 }
Edge< storageType > * Link(Node< storageType > *)
Link this node with another, with this node as its source.
Definition: node.h:220

◆ Import() [3/3]

def Python.Markopy.MarkovModel.Import ( str  filename)

Definition at line 22 of file mm.py.

22  def Import(filename : str):
23  pass
24 

◆ Nodes()

std::map<char , Node<char >*>* Markov::Model< char >::Nodes ( )
inlineinherited

Return starter Node.

Returns
starter node with 00 NodeValue

Definition at line 181 of file model.h.

181 { return &nodes;}

◆ OpenDatasetFile()

std::ifstream * Markov::API::MarkovPasswords::OpenDatasetFile ( const char *  filename)
inherited

Open dataset file and return the ifstream pointer.

Parameters
filename- Filename to open
Returns
ifstream* to the the dataset file

Definition at line 51 of file markovPasswords.cpp.

51  {
52 
53  std::ifstream* datasetFile;
54 
55  std::ifstream newFile(filename);
56 
57  datasetFile = &newFile;
58 
59  this->Import(datasetFile);
60  return datasetFile;
61 }

References Markov::Model< NodeStorageType >::Import().

Here is the call graph for this function:

◆ OptimizeEdgeOrder()

void Markov::Model< char >::OptimizeEdgeOrder
inherited

Sort edges of all nodes in the model ordered by edge weights.

Definition at line 186 of file model.h.

265  {
266  for (std::pair<unsigned char, Markov::Node<NodeStorageType>*> const& x : this->nodes) {
267  //std::cout << "Total edges in EdgesV: " << x.second->edgesV.size() << "\n";
268  std::sort (x.second->edgesV.begin(), x.second->edgesV.end(), [](Edge<NodeStorageType> *lhs, Edge<NodeStorageType> *rhs)->bool{
269  return lhs->EdgeWeight() > rhs->EdgeWeight();
270  });
271  //for(int i=0;i<x.second->edgesV.size();i++)
272  // std::cout << x.second->edgesV[i]->EdgeWeight() << ", ";
273  //std::cout << "\n";
274  }
275  //std::cout << "Total number of nodes: " << this->nodes.size() << std::endl;
276  //std::cout << "Total number of edges: " << this->edges.size() << std::endl;
277 }

◆ RandomWalk()

char * Markov::Model< char >::RandomWalk ( Markov::Random::RandomEngine randomEngine,
int  minSetting,
int  maxSetting,
NodeStorageType buffer 
)
inherited

Do a random walk on this model.

Start from the starter node, on each node, invoke RandomNext using the random engine on current node, until terminator node is reached. If terminator node is reached before minimum length criateria is reached, ignore the last selection and re-invoke randomNext

If maximum length criteria is reached but final node is not, cut off the generation and proceed to the final node. This function takes Markov::Random::RandomEngine as a parameter to generate pseudo random numbers from

This library is shipped with two random engines, Marsaglia and Mersenne. While mersenne output is higher in entropy, most use cases don't really need super high entropy output, so Markov::Random::Marsaglia is preferable for better performance.

This function WILL NOT reallocate buffer. Make sure no out of bound writes are happening via maximum length criteria.

Example Use: Generate 10 lines, with 5 to 10 characters, and print the output. Use Marsaglia

Model.import("model.mdl");
char* res = new char[11];
Markov::Random::Marsaglia MarsagliaRandomEngine;
for (int i = 0; i < 10; i++) {
this->RandomWalk(&MarsagliaRandomEngine, 5, 10, res);
std::cout << res << "\n";
}
Model()
Initialize a model with only start and end nodes.
Definition: model.h:210
Parameters
randomEngineRandom Engine to use for the random walks. For examples, see Markov::Random::Mersenne and Markov::Random::Marsaglia
minSettingMinimum number of characters to generate
maxSettingMaximum number of character to generate
bufferbuffer to write the result to
Returns
Null terminated string that was generated.

Definition at line 86 of file model.h.

307  {
309  int len = 0;
311  while (true) {
312  temp_node = n->RandomNext(randomEngine);
313  if (len >= maxSetting) {
314  break;
315  }
316  else if ((temp_node == NULL) && (len < minSetting)) {
317  continue;
318  }
319 
320  else if (temp_node == NULL){
321  break;
322  }
323 
324  n = temp_node;
325 
326  buffer[len++] = n->NodeValue();
327  }
328 
329  //null terminate the string
330  buffer[len] = 0x00;
331 
332  //do something with the generated string
333  return buffer; //for now
334 }
Node< storageType > * RandomNext(Markov::Random::RandomEngine *randomEngine)
Chose a random node from the list of edges, with regards to its EdgeWeight, and TraverseNode to that.
Definition: node.h:234

◆ Save()

std::ofstream * Markov::API::MarkovPasswords::Save ( const char *  filename)
inherited

Export model to file.

Parameters
filename- Export filename.
Returns
std::ofstream* of the exported file.

Definition at line 106 of file markovPasswords.cpp.

106  {
107  std::ofstream* exportFile;
108 
109  std::ofstream newFile(filename);
110 
111  exportFile = &newFile;
112 
113  this->Export(exportFile);
114  return exportFile;
115 }

References Markov::Model< NodeStorageType >::Export().

Here is the call graph for this function:

◆ StarterNode()

Node<char >* Markov::Model< char >::StarterNode ( )
inlineinherited

Return starter Node.

Returns
starter node with 00 NodeValue

Definition at line 171 of file model.h.

171 { return starterNode;}

◆ Train() [1/2]

void Markov::API::MarkovPasswords::Train ( const char *  datasetFileName,
char  delimiter,
int  threads 
)
inherited

Train the model with the dataset file.

Parameters
datasetFileName- Ifstream* to the dataset. If null, use class member
delimiter- a character, same as the delimiter in dataset content
threads- number of OS threads to spawn
mp.Import("models/2gram.mdl");
mp.Train("password.corpus");
Markov::Model with char represented nodes.
Definition: mp.py:1

Definition at line 65 of file markovPasswords.cpp.

65  {
66  signal(SIGINT, intHandler);
67  Markov::API::Concurrency::ThreadSharedListHandler listhandler(datasetFileName);
68  auto start = std::chrono::high_resolution_clock::now();
69 
70  std::vector<std::thread*> threadsV;
71  for(int i=0;i<threads;i++){
72  threadsV.push_back(new std::thread(&Markov::API::MarkovPasswords::TrainThread, this, &listhandler, delimiter));
73  }
74 
75  for(int i=0;i<threads;i++){
76  threadsV[i]->join();
77  delete threadsV[i];
78  }
79  auto finish = std::chrono::high_resolution_clock::now();
80  std::chrono::duration<double> elapsed = finish - start;
81  std::cout << "Elapsed time: " << elapsed.count() << " s\n";
82 
83 }
Simple class for managing shared access to file.
void TrainThread(Markov::API::Concurrency::ThreadSharedListHandler *listhandler, char delimiter)
A single thread invoked by the Train function.
void intHandler(int dummy)

References intHandler(), Markov::API::Concurrency::ThreadSharedListHandler::ThreadSharedListHandler(), and Markov::API::MarkovPasswords::TrainThread().

Referenced by Markov::Markopy::BOOST_PYTHON_MODULE(), Markov::GUI::Generate::train(), Markov::GUI::Train::train(), and Markov::API::ModelMatrix::Train().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ Train() [2/2]

def Python.Markopy.MarkovModel.Train ( str  dataset,
str  seperator,
int  threads 
)

Definition at line 30 of file mm.py.

30  def Train(dataset: str, seperator : str, threads : int):
31  pass
32 

◆ TrainThread()

void Markov::API::MarkovPasswords::TrainThread ( Markov::API::Concurrency::ThreadSharedListHandler listhandler,
char  delimiter 
)
privateinherited

A single thread invoked by the Train function.

Parameters
listhandler- Listhandler class to read corpus from
delimiter- a character, same as the delimiter in dataset content

Definition at line 85 of file markovPasswords.cpp.

85  {
86  char format_str[] ="%ld,%s";
87  format_str[3]=delimiter;
88  std::string line;
89  while (listhandler->next(&line) && keepRunning) {
90  long int oc;
91  if (line.size() > 100) {
92  line = line.substr(0, 100);
93  }
94  char* linebuf = new char[line.length()+5];
95 #ifdef _WIN32
96  sscanf_s(line.c_str(), "%ld,%s", &oc, linebuf, line.length()+5); //<== changed format_str to-> "%ld,%s"
97 #else
98  sscanf(line.c_str(), format_str, &oc, linebuf);
99 #endif
100  this->AdjustEdge((const char*)linebuf, oc);
101  delete linebuf;
102  }
103 }
bool next(std::string *line)
Read the next line from the file.
static volatile int keepRunning

References Markov::Model< NodeStorageType >::AdjustEdge(), keepRunning, and Markov::API::Concurrency::ThreadSharedListHandler::next().

Referenced by Markov::API::MarkovPasswords::Train().

Here is the call graph for this function:
Here is the caller graph for this function:

Member Data Documentation

◆ datasetFile

std::ifstream* Markov::API::MarkovPasswords::datasetFile
privateinherited

Definition at line 123 of file markovPasswords.h.

◆ edges

std::vector<Edge<char >*> Markov::Model< char >::edges
privateinherited

A list of all edges in this model.

Definition at line 204 of file model.h.

◆ modelSavefile

std::ofstream* Markov::API::MarkovPasswords::modelSavefile
privateinherited

Dataset file input of our system

Definition at line 124 of file markovPasswords.h.

◆ nodes

std::map<char , Node<char >*> Markov::Model< char >::nodes
privateinherited

Map LeftNode is the Nodes NodeValue Map RightNode is the node pointer.

Definition at line 193 of file model.h.

◆ outputFile

std::ofstream* Markov::API::MarkovPasswords::outputFile
privateinherited

File to save model of our system

Definition at line 125 of file markovPasswords.h.

◆ starterNode

Node<char >* Markov::Model< char >::starterNode
privateinherited

Starter Node of this model.

Definition at line 198 of file model.h.


The documentation for this class was generated from the following file: